Absence of ferromagnetism in Mn- and Co-doped ZnO
نویسندگان
چکیده
منابع مشابه
Room Temperature Ferromagnetism in Cobalt Doped ZnO Nanoparticles
In this work we report synthesis and magnetic characterization of cobalt doped ZnO nanoparticles (with different percent of doped cobalt oxide). Synthesis of the materials was carried out at room temperature by polyacrylamide-gel method, using zink sulfate and cobalt nitrate as source materials, acrylamide as monomer and N,N-methylene bisacrylamide as a lattice reagent. Characterization of the ...
متن کاملRoom-temperature ferromagnetism in carbon-doped ZnO.
We report ferromagnetism in carbon-doped ZnO. Our first-principles calculations based on density functional theory predicted a magnetic moment of 2.02 mu(B) per carbon when carbon substitutes oxygen in ZnO, and an ferromagnetic coupling among magnetic moments of the carbon dopants. The theoretical prediction was confirmed experimentally. C-doped ZnO films deposited by pulsed-laser deposition sh...
متن کاملRoom Temperature Ferromagnetism in Cobalt Doped ZnO Nanoparticles
In this work we report synthesis and magnetic characterization of cobalt doped ZnO nanoparticles (with different percent of doped cobalt oxide). Synthesis of the materials was carried out at room temperature by polyacrylamide-gel method, using zink sulfate and cobalt nitrate as source materials, acrylamide as monomer and N,N-methylene bisacrylamide as a lattice reagent. Characterization of the ...
متن کاملMnO nanoparticles as the cause of ferromagnetism in bulk dilute Mn-doped ZnO
Articles you may be interested in Bias voltage-controlled ferromagnetism switching in undoped zinc oxide thin film memory device Appl. Electrical control of exchange bias via oxygen migration across CoO-ZnO nanocomposite barrier Appl. High repetition rate ultrashort laser cuts a path through fog Appl.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Materials Chemistry
سال: 2005
ISSN: 0959-9428,1364-5501
DOI: 10.1039/b412993h